제어(2)
-
[3줄 Control] 샘플링 대신 뉴럴넷
https://arxiv.org/abs/1806.05767 Motion Planning Networks Fast and efficient motion planning algorithms are crucial for many state-of-the-art robotics applications such as self-driving cars. Existing motion planning methods become ineffective as their computational complexity increases exponentially with the dime arxiv.org 1. Path Planning 문제를 기존에 샘플링 베이스드 방법론으로 풀었다. 시간을 오래 들이면 더 좋은 해가 나오지만 실시간 ..
2021.08.18 -
[3줄 RL] RL로 QP 풀기
https://arxiv.org/pdf/2107.10847.pdf 1. OSQP의 first-order optimization은 임베디드 제어 등에서 큰 역할을 한다. 또한 최근 강화학습을 이용해 combinatorial optimization 문제를 해결하는 등의 사례가 늘고 있다. 2. 이에 따라 QP 솔버의 하이퍼파라미터를 기존 휴리스틱한 방법이나 사람이 직접 튜닝하는 대신 RL(TD3)을 사용해 튜닝하는 프레임워크를 본 논문에서는 제안하고 있다. 3. 실제로 성능이 큰 폭으로 개선된 것을 볼 수 있다. 전통적인 제어등 최적화 분야에서 강화학습이 제어기 자체를 e2e로 대체하는 접근보다 하이퍼파라미터 튜닝 등 최적화 관점에서 접근하는게 더 빠르고 효율적이라는 생각을 항상 가지고 있다.
2021.07.30