Google(5)
-
[3줄 RL] Back to basic
https://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw arxiv.org 1. 기존 Tabular Q-Learning은 image와 같은 observation에 대응 ..
2021.08.10 -
[3줄 AutoML] AMC, 미국 작전주가 아니라 뉴럴넷 컴프레서!
https://arxiv.org/pdf/1802.03494v4.pdf 1. 뉴럴넷 경량화는 당연하게도 디플로이 시 매우 중요한 것 중 하나인데, 사람이 하면 그냥 쌩 노가다에 가까운 작업이다(해봐서 안다) 그래서 이것을 자동화할 수 있다면 정말 대박인데, 그래서 이 논문이 대박이다(?) 2. 뉴럴넷 레이어의 임베딩을 받고 적정한 압축률을 제시하는 강화학습 에이전트(DDPG)를 이용해 자동화된 뉴럴넷 압축을 수행하게 되는데, 모델의 특성상 RNN을 사용하지 않아도 되어서 가볍다. 또한 리워드는 압축률과 정확성을 모두 잘 고려한 형태로 정의된다. 3. Human Expert에 비해 높은 압축률과 정확도를 취할 수 있었으며, 오버피팅 또한 관찰되지 않았다.
2021.07.12 -
[3줄 AutoML] 모든 사람을 면접할 수 없고, 모든 모델을 학습할 수 없다.
1. 학교나 기업의 전통적인 채용 프로세스는 먼저 서류나 추천 등으로 사람을 거르고 면접을 보는 것인데, 이것은 시간이 너무나 오래 걸리기 때문이다. 만약 우리가 NAS를 하면서 모든 모델을 학습시켜 정확도를 찍어보고 있다면, 수천명의 지원자를 면접하는 것과 같은 비효율적인 행위를 하는 것에 가까운 것이다. 2. 그렇다면 NAS에도 서류 전형을 도입할 수 있을까? 라는 아이디어에서 나온 것이 Neural Predictor인데, 이것은 몇 개의 아키텍쳐만 학습한 다음 Graph CNN을 이용해 아키텍쳐와 정확도에 대한 회귀 모델을 만드는 것이다. 3. Neural Predictor를 이용해 좋지 않은 모델을 미리 걸러냄으로써 기존 방법 대비 Sample Efficiency를 크게 향상시켰다.
2021.07.12 -
[3줄 AutoML] 언제까지 ReLU에 만족할래?
https://arxiv.org/abs/1710.05941 Searching for Activation Functions The choice of activation functions in deep networks has a significant effect on the training dynamics and task performance. Currently, the most successful and widely-used activation function is the Rectified Linear Unit (ReLU). Although various hand-design arxiv.org 1. 그래, 렐루 좋은데 언제까지 렐루에만 안주할래? 우리는 오토매틱 서치로 새로운 액티베이션 펑션 만들거야! 2..
2021.07.07 -
[3줄 AutoML] NAS with RL: 그 원대한 시작
https://arxiv.org/abs/1611.01578 1. 근본적인 물음: 좋은 비전 아키텍쳐란 무엇이고 어떻게 표현할 수 있으며, 어떻게 만들어야 하는가? 꼭 사람이 만들어야 하는가? 2. NN은 결국 computational graph로 표현할 수 있다면, 노드들을 쌓아서 NN을 만들 수 있고, 결국 강화학습으로 해결 가능한 하나의 sequential decision making problem으로 해석할 수 있다! 3. 800개의 GPU를 갈아넣은 결과 기존에 찾아볼 수 없었던 구조의 새롭고 성능좋은 뉴럴넷이 탄생했으며, 이것은 “강화학습 기반 NAS”의 진정한 시작을 의미한다.
2021.07.07