DeepMind(3)
-
[3줄 RL] Back to basic
https://arxiv.org/abs/1312.5602 Playing Atari with Deep Reinforcement Learning We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw arxiv.org 1. 기존 Tabular Q-Learning은 image와 같은 observation에 대응 ..
2021.08.10 -
[3줄 AutoML] 언제까지 ReLU에 만족할래?
https://arxiv.org/abs/1710.05941 Searching for Activation Functions The choice of activation functions in deep networks has a significant effect on the training dynamics and task performance. Currently, the most successful and widely-used activation function is the Rectified Linear Unit (ReLU). Although various hand-design arxiv.org 1. 그래, 렐루 좋은데 언제까지 렐루에만 안주할래? 우리는 오토매틱 서치로 새로운 액티베이션 펑션 만들거야! 2..
2021.07.07 -
[3줄 AutoML] NAS with RL: 그 원대한 시작
https://arxiv.org/abs/1611.01578 1. 근본적인 물음: 좋은 비전 아키텍쳐란 무엇이고 어떻게 표현할 수 있으며, 어떻게 만들어야 하는가? 꼭 사람이 만들어야 하는가? 2. NN은 결국 computational graph로 표현할 수 있다면, 노드들을 쌓아서 NN을 만들 수 있고, 결국 강화학습으로 해결 가능한 하나의 sequential decision making problem으로 해석할 수 있다! 3. 800개의 GPU를 갈아넣은 결과 기존에 찾아볼 수 없었던 구조의 새롭고 성능좋은 뉴럴넷이 탄생했으며, 이것은 “강화학습 기반 NAS”의 진정한 시작을 의미한다.
2021.07.07